The container is fitted with a piston so that the volume can change. When the gas is heated at constant pressure, it expands to a volume of 25 L. What is the temperature of the gas in kelvins?

Respuesta :

Answer:

[tex]T_{2}[/tex] =[tex]\frac{25T_{1}}{V_{1}}[/tex]

where

[tex]V_{1}[/tex] is initial volume in liters

[tex]T_{1}[/tex] is initial temperature in kelvins

Explanation:

Let the initial volume be [tex]V_{1}[/tex] and the initial temperature be  [tex]P_{1}[/tex]

Now by ideal gas law

[tex]\frac{P_{1}V_{1}}{T_{1}}=nR..............(i)[/tex]

Similarly let

[tex]V_{2}[/tex] be final volume

[tex]T_{2}[/tex] be the final volume

thus by ideal gas law we again have

[tex]\frac{P_{2}V_{2}}{T_{2}}=nR..............(ii)[/tex]

Equating i and ii we get

[tex]\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}[/tex]

For system at constant pressure the above expression reduces to

[tex]\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}[/tex]

Solving for [tex]T_{2}[/tex] we get

[tex]T_{2}[/tex] =[tex]\frac{25T_{1}}{V_{1}}[/tex]

where

[tex]V_{1}[/tex] is initial volume in liters

[tex]T_{1}[/tex] is initial temperature in kelvins

ACCESS MORE