Answer:
[tex]T_{2}[/tex] =[tex]\frac{25T_{1}}{V_{1}}[/tex]
where
[tex]V_{1}[/tex] is initial volume in liters
[tex]T_{1}[/tex] is initial temperature in kelvins
Explanation:
Let the initial volume be [tex]V_{1}[/tex] and the initial temperature be [tex]P_{1}[/tex]
Now by ideal gas law
[tex]\frac{P_{1}V_{1}}{T_{1}}=nR..............(i)[/tex]
Similarly let
[tex]V_{2}[/tex] be final volume
[tex]T_{2}[/tex] be the final volume
thus by ideal gas law we again have
[tex]\frac{P_{2}V_{2}}{T_{2}}=nR..............(ii)[/tex]
Equating i and ii we get
[tex]\frac{P_{1}V_{1}}{T_{1}}=\frac{P_{2}V_{2}}{T_{2}}[/tex]
For system at constant pressure the above expression reduces to
[tex]\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}[/tex]
Solving for [tex]T_{2}[/tex] we get
[tex]T_{2}[/tex] =[tex]\frac{25T_{1}}{V_{1}}[/tex]
where
[tex]V_{1}[/tex] is initial volume in liters
[tex]T_{1}[/tex] is initial temperature in kelvins