Answer:
[tex]N=2.138\times 10^{19}[/tex]Rubidium atoms
Explanation:
Given:
The half life of Rubidium-87 = [tex]4.9\times 10^{11} years[/tex]
Decay rate, A = 3500 Disintegration per hr
Now, converting the half life in hrs
Half life in hrs will be = 4.9×10¹¹ yrs × 360 days/ 1yrs × 24 hrs / 1 days
Half life in hrs = 4.23×10¹⁵ hrs
Now, We know that
Activity (A) = λ N
where, N = number of atoms.
also,
[tex]\lambda=\frac{0.693}{t^\frac{1}{2}}[/tex]
where,
[tex]{t^\frac{1}{2}[/tex] = half life
therefore,
[tex]\lambda=\frac{0.693}{4.23\times 10^{15}}[/tex]
= 1.64×10⁻¹⁶ hr⁻¹
now,
[tex]N=\frac{A}{\lambda}[/tex]
substituting the values in the equation we have
[tex]N=\frac{3500}{1.64\times 10^{-16}}[/tex]
[tex]N=2.138\times 10^{19}[/tex]Rubidium atoms