Respuesta :
Answer:
[tex]\sigma=2.124\times 10^{-13}C/m^{2}[/tex]
Explanation:
Given:
Electric Flux = [tex]3\times10^{-5}N.m^2/C[/tex]
Side of sheet = 5cm
Area of the square sheet, A= 5×5 = 25cm²=25×10⁻⁴ m²
Now
the electric flux (Φ) is given as:
[tex]\phi =EA[/tex]
where, E = Electric field
or
[tex]E=\frac{\phi}{A}[/tex]
substituting the values in the above equation, we get
[tex]E=\frac{3\times10^{-5}N.m^2/C}{25\times 10^{-4}}[/tex]
[tex]E=0.012N/C[/tex]
Now the charge density (σ) on a sheet is given as:
[tex]\sigma=2\epsilon_oE[/tex]
where, [tex]\epsilon_o[/tex] = Permittivity of the free space = 8.85×10⁻¹²
substituting the values in the above equation, we get
[tex]\sigma=2\times 8.85\times10^{-12}\times 0.012[/tex]
[tex]\sigma=2.124\times 10^{-13}C/m^{2}[/tex]
The charge density on the sheet is 2.12 x 10⁻¹³ C/m².
Electric field
The electric field experienced by the charge is calculated as follows;
Ф = EA
where;
- Ф is flux
- A is area
- E is electric field strength
[tex]E = \frac{\Phi }{A} \\\\E = \frac{3 \times 10^{-5} }{(0.05)^2} \\\\E = 0.012 \ N/C[/tex]
Charge density
The charge density on the sheet is calculated as follows;
σ = 2εE
σ = 2 x 8.85 x 10⁻¹² x 0.012
σ = 2.12 x 10⁻¹³ C/m²
Learn more about charge density here: https://brainly.com/question/14568868