Respuesta :

Answer:

a) [tex]\frac{N}{N_{0}}=0.1353[/tex]

b) [tex]\frac{N}{N_{0}}=0.0183[/tex]

c) [tex]\frac{N}{N_{0}}=4.54\times 10^{-5}[/tex]

Explanation:

using equation

[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]

where T is  half lives

a) two half-lives

[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]

[tex]N=N_{0}e^{(-\frac{2T}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=e^{(-\frac{2T}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=0.1353[/tex]

b) four half-lives

[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=e^{(-\frac{4T}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=0.0183[/tex]

c) 10 half-lives

[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=e^{(-\frac{10T}{T} )}[/tex]

[tex]\frac{N}{N_{0}}=4.54\times 10^{-5}[/tex]

ACCESS MORE