Answer:
a) [tex]\frac{N}{N_{0}}=0.1353[/tex]
b) [tex]\frac{N}{N_{0}}=0.0183[/tex]
c) [tex]\frac{N}{N_{0}}=4.54\times 10^{-5}[/tex]
Explanation:
using equation
[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]
where T is half lives
a) two half-lives
[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]
[tex]N=N_{0}e^{(-\frac{2T}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=e^{(-\frac{2T}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=0.1353[/tex]
b) four half-lives
[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=e^{(-\frac{4T}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=0.0183[/tex]
c) 10 half-lives
[tex]N=N_{0}e^{(-\frac{t}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=e^{(-\frac{10T}{T} )}[/tex]
[tex]\frac{N}{N_{0}}=4.54\times 10^{-5}[/tex]