Answer : The rate constant for this reaction at 384.7 K is, [tex]7.493\times 10^{-14}cm^3mole^{-1}[/tex]
Explanation :
The relation between frequency factor, rate constant and activation energy for a chemical reaction is,
[tex]k=A\times e^{[\frac{-Ea}{RT}]}[/tex]
where,
k = rate constant = ?
A = frequency factor = [tex]4.23\times 10^{-12}cm^3\text{ molecule}^{-1}s^{-1}[/tex]
Ea = activation energy = 12.9 kJ/mol
T = temperature = 384.7 K
Now put all the given values in this formula, we get:
[tex]k=4.23\times 10^{-12}cm^3\text{ molecule}^{-1}s^{-1}\times e^{[\frac{-12.9kJ/mol}{(8.314J/mole.K)\times (384.7K)}]}[/tex]
[tex]k=7.493\times 10^{-14}cm^3mole^{-1}[/tex]
Therefore, the rate constant for this reaction at 384.7 K is, [tex]7.493\times 10^{-14}cm^3mole^{-1}[/tex]