Two solutions to y'' – 2y' – 35y = 0 are yı = e, Y2 = e -5t a) Find the Wronskian. W = 0 Preview b) Find the solution satisfying the initial conditions y(0) = – 7, y'(0) = 23 y = ( Preview

Respuesta :

Answer:

a.[tex]w(t)=-12e^{2t}[/tex]

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

Step-by-step explanation:

We have a differential equation

y''-2 y'-35 y=0

Auxillary equation

[tex](D^2-2D-35)=0[/tex]

By factorization method we are  finding the solution

[tex]D^2-7D+5D-35=0[/tex]

[tex](D-7)(D+5)=0[/tex]

Substitute each factor equal to zero

D-7=0  and D+5=0

D=7  and D=-5

Therefore ,

General solution is

[tex]y(x)=C_1e^{7t}+C_2e^{-5t}[/tex]

Let [tex]y_1=e^{7t} \;and \;y_2=e^{-5t}[/tex]

We have to find Wronskian

[tex]w(t)=\begin{vmatrix}y_1&y_2\\y'_1&y'_2\end{vmatrix}[/tex]

Substitute values then we get

[tex]w(t)=\begin{vmatrix}e^{7t}&e^{-5t}\\7e^{7t}&-5e^{-5t}\end{vmatrix}[/tex]

[tex]w(t)=-5e^{7t}\cdot e^{-5t}-7e^{7t}\cdot e^{-5t}=-5e^{7t-5t}-7e^[7t-5t}[/tex]

[tex]w(t)=-5e^{2t}-7e^{2t}=-12e^{2t}[/tex]

a.[tex]w(t)=-12e^{2t}[/tex]

We are given that y(0)=-7 and y'(0)=23

Substitute the value in general solution the we get

[tex]y(0)=C_1+C_2[/tex]

[tex]C_1+C_2=-7[/tex]....(equation I)

[tex]y'(t)=7C_1e^{7t}-5C_2e^{-5t}[/tex]

[tex]y'(0)=7C_1-5C_2[/tex]

[tex]7C_1-5C_2=23[/tex]......(equation II)

Equation I is multiply by 5 then we subtract equation II from equation I

Using elimination method we eliminate[tex] C_1[/tex]

Then we get [tex]C_2=-\frac{5}{2}[/tex]

Substitute the value of [tex] C_2 [/tex] in  I equation then we get

[tex] C_1-\frac{5}{2}=-7[/tex]

[tex] C_1=-7+\frac{5}{2}=\frac{-14+5}{2}=-\frac{9}{2}[/tex]

Hence, the general solution is

b.[tex] y(t)=-\frac{9}{2}e^{7t}-\frac{5}{2}e^{-5t}[/tex]

ACCESS MORE