Determine the average value of the translational kinetic energy of the molecules of an ideal gas at (a) 27.8°C and (b) 143°C. What is the translational kinetic energy per mole of an ideal gas at (c) 27.8°C and (d) 143°C?

Respuesta :

Answer:

a) [tex]k_{avg}=6.22\times 10^{-21}[/tex]

b) [tex]k_{avg}=8.61\times 10^{-21}[/tex]

c)  [tex]k_{mol}=3.74\times 10^{3}J/mol[/tex]

d)   [tex]k_{mol}=5.1\times 10^{3}J/mol[/tex]

Explanation:

Average translation kinetic energy ([tex]k_{avg} [/tex]) is given as

[tex]k_{avg}=\frac{3}{2}\times kT[/tex]    ....................(1)

where,

k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K

T = Temperature in kelvin

a) at T = 27.8° C

or

T = 27.8 + 273 = 300.8 K

substituting the value of temperature in the equation (1)

we have

[tex]k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 300.8[/tex]  

[tex]k_{avg}=6.22\times 10^{-21}J[/tex]

b) at T = 143° C

or

T = 143 + 273 = 416 K

substituting the value of temperature in the equation (1)

we have

[tex]k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 416[/tex]  

[tex]k_{avg}=8.61\times 10^{-21}J[/tex]

c ) The translational kinetic energy per mole of an ideal gas is given as:

       [tex]k_{mol}=A_{v}\times k_{avg}[/tex]

here   [tex]A_{v}[/tex] = Avagadro's number; ( 6.02×10²³ )

now at T = 27.8° C

        [tex]k_{mol}=6.02\times 10^{23}\times 6.22\times 10^{-21}[/tex]

          [tex]k_{mol}=3.74\times 10^{3}J/mol[/tex]

d) now at T = 143° C

        [tex]k_{mol}=6.02\times 10^{23}\times 8.61\times 10^{-21}[/tex]

          [tex]k_{mol}=5.1\times 10^{3}J/mol[/tex]

ACCESS MORE