Answer:
a) [tex]k_{avg}=6.22\times 10^{-21}[/tex]
b) [tex]k_{avg}=8.61\times 10^{-21}[/tex]
c) [tex]k_{mol}=3.74\times 10^{3}J/mol[/tex]
d) [tex]k_{mol}=5.1\times 10^{3}J/mol[/tex]
Explanation:
Average translation kinetic energy ([tex]k_{avg} [/tex]) is given as
[tex]k_{avg}=\frac{3}{2}\times kT[/tex] ....................(1)
where,
k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K
T = Temperature in kelvin
a) at T = 27.8° C
or
T = 27.8 + 273 = 300.8 K
substituting the value of temperature in the equation (1)
we have
[tex]k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 300.8[/tex]
[tex]k_{avg}=6.22\times 10^{-21}J[/tex]
b) at T = 143° C
or
T = 143 + 273 = 416 K
substituting the value of temperature in the equation (1)
we have
[tex]k_{avg}=\frac{3}{2}\times 1.38\times 10^{-23}\times 416[/tex]
[tex]k_{avg}=8.61\times 10^{-21}J[/tex]
c ) The translational kinetic energy per mole of an ideal gas is given as:
[tex]k_{mol}=A_{v}\times k_{avg}[/tex]
here [tex]A_{v}[/tex] = Avagadro's number; ( 6.02×10²³ )
now at T = 27.8° C
[tex]k_{mol}=6.02\times 10^{23}\times 6.22\times 10^{-21}[/tex]
[tex]k_{mol}=3.74\times 10^{3}J/mol[/tex]
d) now at T = 143° C
[tex]k_{mol}=6.02\times 10^{23}\times 8.61\times 10^{-21}[/tex]
[tex]k_{mol}=5.1\times 10^{3}J/mol[/tex]