Answer:
[tex]V_{rex}=75.65m/s[/tex] and [tex]a_{res}=0[/tex] at t=5 secs
Explanation:
We have r =2m
[tex]\therefore \frac{dr}{dt}=0\\\\=>V_{r}=0[/tex]
Similarly
[tex]=>V_{\theta }=\omega r\\\\\omega =\frac{d\theta }{dt}=\frac{d(\pi t)}{dt}=\pi \\\\\therefore V_{\theta }=\pi r=2\pi[/tex]
Similarly
[tex]=>V_{z }=\frac{dz}{dt}\\\\V_{z}=\frac{dsin(24\pi t)}{dt}\\\\V_{z}=24\pi cos(24\pi t)[/tex]
Hence
at t =5s [tex]V_{\theta}=2\pi m/s[/tex]
[tex]V_{z}=24\pi cos(120\pi)[/tex]
[tex]V_{z}=24\pi m/s[/tex]
[tex]V_{res}=\sqrt{V_{\theta }^{2}+V_{z}^{2}}[/tex]
Applying values we get
[tex]V_{res}=75.65m/s[/tex]
Similarly
[tex]a_{\theta }=\frac{dV_{\theta }}{dt}=\frac{d(2\pi) }{dt}=0\\\\a_{z}=\frac{d^{2}(sin(24\pi t))}{dt^{2}}\\\\a_{z}=-24^{2}\pi^{2}sin(24\pi t)\\\\\therefore t=5\\a_{z}=0[/tex]