Answer:2x-y=5
Step-by-step explanation:
Given
[tex]x=6+\ln t[/tex]
[tex]y=t^{2}+6[/tex]
[tex]\left ( a\right )[/tex] without eliminating parameter
[tex]\frac{\mathrm{d} x}{\mathrm{d} t}[/tex]=[tex]\frac{1}{t}[/tex]
[tex]\frac{\mathrm{d} y}{\mathrm{d} t}[/tex]=2t
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=2t^2[/tex]
at [tex]\left ( 6,7\right )[/tex]
6=6+[tex]\ln\left ( t\right )[/tex]
t=1
Equation of line is given by
2=[tex]\frac{y-7}{x-6}[/tex]
2x-12=y-7
2x-y=5
[tex]\left ( b\right )[/tex]by eliminating parameter
[tex]x-6=\ln \left ( t\right )[/tex]
[tex]t=e^{x-6}[/tex]
[tex]y=t^2 +6[/tex]
[tex]y=e^{\left ( 2x-12\right )}+6[/tex]
differentiating we get
[tex]\frac{\mathrm{d}y}{\mathrm{d} x}=2e^\left ( 2x-12\right )[/tex]
[tex]at \left ( 6,7\right )[/tex]
[tex]\frac{\mathrm{d}y}{\mathrm{d} x}=2[/tex]
[tex]2\left ( x-6\right )=\left ( y-7\right )[/tex]
2x-y=5