Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter.x = 6 + ln(t), y = t2 + 6, (6, 7)

Respuesta :

Answer:2x-y=5

Step-by-step explanation:

Given

[tex]x=6+\ln t[/tex]

[tex]y=t^{2}+6[/tex]

[tex]\left ( a\right )[/tex] without eliminating parameter

[tex]\frac{\mathrm{d} x}{\mathrm{d} t}[/tex]=[tex]\frac{1}{t}[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} t}[/tex]=2t

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=2t^2[/tex]

at [tex]\left ( 6,7\right )[/tex]

6=6+[tex]\ln\left ( t\right )[/tex]

t=1

Equation of line is given by

2=[tex]\frac{y-7}{x-6}[/tex]

2x-12=y-7

2x-y=5

[tex]\left ( b\right )[/tex]by eliminating parameter

[tex]x-6=\ln \left ( t\right )[/tex]

[tex]t=e^{x-6}[/tex]

[tex]y=t^2 +6[/tex]

[tex]y=e^{\left ( 2x-12\right )}+6[/tex]

differentiating we get

[tex]\frac{\mathrm{d}y}{\mathrm{d} x}=2e^\left ( 2x-12\right )[/tex]

[tex]at \left ( 6,7\right )[/tex]

[tex]\frac{\mathrm{d}y}{\mathrm{d} x}=2[/tex]

[tex]2\left ( x-6\right )=\left ( y-7\right )[/tex]

2x-y=5

ACCESS MORE