Which isomer would you expect to undergo E2 elimination faster, trans-1-bromo-4-tert-butylcyclohexane or cis-1-bromo-4-tert-butylcyclohexane? Draw each molecule in its more stable chair conformation, and explain your answer.

Respuesta :

Answer: Cis-1-bromo-4-tert-butylcyclohexane would undergo faster elimination reaction.

Explanation:

The two primary requirements for an E-2 elimination reaction are:

1.There must be availability of β-hydrogens that is presence of hydrogen on the carbon next to the leaving group.

2.The hydrogen and leaving group must have a anti-periplanar position .

Any substrate which would follow the above two requirements can give elimination reactions.

For the structure of trans-1-bromo-4-tert-butylcyclohexane and cis-1-bromo-4-tert-butylcyclohexane  to be stable it  must have the tert-butyl group in the equatorial position as it is a bulky group and at equatorial position it would not repel other groups. If it is kept on the axial position it would undergo 1,3-diaxial interaction and would destabilize the system and that structure would be unstable.

Kindly find the structures of trans-1-bromo-4-tert-butylcyclohexane and cis-1-bromo-4-tert-butylcyclohexane in attachment.

The cis- 1-bromo-4-tert-butylcyclohexane has the leaving group and β hydrogens in anti-periplanar position so they can give the E2 elimination reactions easily.

The trans-1-bromo-4-tert-butylcyclohexane  does not have the leaving group and βhydrogen in anti periplanar position so they would not give elimination reaction easily.

so only the cis-1-bromo-4-tert butyl cyclohexane would give elimination reaction.

Ver imagen bratislava
ACCESS MORE