Answer:
Total electric potential, [tex]V=1.32\times 10^6\ volts[/tex]
Explanation:
It is given that,
First charge, [tex]q_1=3\ \mu C=3\times 10^{-6}\ C[/tex]
Second charge, [tex]q_2=-2.28\ \mu C=-2.28\times 10^{-6}\ C[/tex]
Distance of first charge from origin, [tex]r_1=1.15\ cm=0.0115\ m[/tex]
Distance of second charge from origin, [tex]r_2=2\ cm=0.02\ m[/tex]
We need to find the total electric potential at the origin. The electric potential at the origin is given by :
[tex]V=\dfrac{kq_1}{r_1}+\dfrac{kq_2}{r_2}[/tex]
[tex]V=k(\dfrac{q_1}{r_1}+\dfrac{q_2}{r_2})[/tex]
[tex]V=9\times 10^9(\dfrac{3\times 10^{-6}}{0.0115}+\dfrac{-2.28\times 10^{-6}}{0.02})[/tex]
V = 1321826.08 V
or
[tex]V=1.32\times 10^6\ volts[/tex]
So, the total electric potential at the origin is [tex]1.32\times 10^6\ volts[/tex]. Hence, this is the required solution.