Respuesta :
Answer:
The meteoroid's speed is 18.5 km/s
Explanation:
Given that,
Speed = 14.8 km/s
Distance [tex]d= 3.84\times10^{8}[/tex]
We need to calculate the meteoroid's speed
The total initial energy
[tex]E_{i}=K_{i}+U_{i}[/tex]
[tex]E_{i}=\dfrac{1}{2}mv_{i}^2-\dfrac{GM_{e}m}{r}[/tex]
Where, m = mass of meteoroid
G = gravitational constant
[tex]M_{e}[/tex]=mass of earth
r = distance from earth center
Now, The meteoroid hits the earth then the distance of meteoroid from the earth 's center will be equal to the radius of earth
The total final energy
[tex]E_{f}=K_{f}+U_{f}[/tex]
[tex]E_{f}=\dfrac{1}{2}mv_{f}^2-\dfrac{GM_{e}m}{r_{e}}[/tex]
Where,
[tex]r_{e}[/tex]=radius of earth
Using conservation of energy
[tex]E_{i}=E_{j}[/tex]
Put the value of initial and final energy
[tex]\dfrac{1}{2}mv_{i}^2-\dfrac{GM_{e}m}{r}=\dfrac{1}{2}mv_{f}^2-\dfrac{GM_{e}m}{r_{e}}[/tex]
[tex]v_{f}^2=v_{i}^2+2GM_{e}(\dfrac{1}{r_{e}}-\dfrac{1}{r})[/tex]
Put the value in the equation
[tex]v_{f}^2=(14.8\times10^{3})^2+2\times6.67\times10^{-11}\times5.97\times10^{24}(\dfrac{1}{6.37\times10^{6}}-\dfrac{1}{3.84\times10^{8}})[/tex]
[tex]v_{f}=\sqrt{(14.8\times10^{3})^2+2\times6.67\times10^{-11}\times5.97\times10^{24}(\dfrac{1}{6.37\times10^{6}}-\dfrac{1}{3.84\times10^{8}})}[/tex]
[tex]v_{f}=18492.95\ m/s[/tex]
[tex]v_{f}=18.5\ km/s[/tex]
Hence, The meteoroid's speed is 18.5 km/s