Answer:
[tex]x_{1}=-2,x_{2}=4[/tex]
value of g(x) at these points are as follows
g(-2)=30
g(4)=-78
Explanation:
Given
g(x)=[tex]x^{3}-3x^{2}-24x+2[/tex]
Differentiating with respect to x we get
[tex]g'(x)=3x^{2}-6x-24[/tex]
to obtain point of extrema we equate g'(x) to zero
[tex]g'(x)=3x^{2}-6x-24\\\\\therefore 3x^{2}-6x-24=0\\\\\Rightarrow x^{2}-2x-8=0\\\\x^{2}-4x+2x-8=0\\x(x-4)+2(x-4)=0\\(x+2)(x-4)=0[/tex]
Thus the critical points are obtained as [tex]x_{1}=-2,x_{2}=4[/tex]
The values at these points are as
[tex]g(-2)=(-2)^{3}-3(-2)^{2}-24(-2)+2=30\\\\g(4)=(4)^{3}-3(4)^{2}-24(4)+2=-78[/tex]