Respuesta :
Answer:
[tex]m = 0.686 kg[/tex]
Explanation:
For thermal equilibrium we know that
Heat given by aluminium = Heat absorbed by water
For water
[tex]Q_1 = m_1 s_1\Delta T_1[/tex]
[tex]Q_1 = m(4186)(68 - 23)[/tex]
For aluminium
[tex]Q_2 = m_2s_2\Delta T_2[/tex]
[tex]Q_2 = (1.75)(900)(150 - 68)[/tex]
[tex]Q_2 = 129150 J[/tex]
now by condition mentioned above we have
[tex]m(4186)(68 - 23) = 129150[/tex]
[tex]m = 0.686 kg[/tex]
Answer:
0.73kg
Explanation:
let,
The mass of the water as [tex]m_{water}[/tex]
Given:
Mass of the aluminum, [tex]m_{Al} =1.85 kg[/tex]
Initial temperature of the water, [tex]T_1=23^oC[/tex]
Initial temperature of the aluminum, [tex]T_2=150^oC[/tex]
The final temperature of the aluminum, [tex]T_3=68^oC[/tex]
Now,
the heat gained by the water = the heat lost by the aluminium
[tex]m_w\times C_w\times(T_3-T_1)=m_{Al}\times C_{Al}\times (T2-T3)[/tex]
where,
[tex]C_w \ and\ C_{Al}[/tex] = specific heat of water and aluminium
[tex]C_w = 4186\ J/kg^oC \ and\ C_{Al}=904 J/kg^oC[/tex]
substituting the values in the equation, we get
[tex]m_w\times 4186\times(68-23)=1.75\times 904\times (150-63)[/tex]
thus,
[tex]m_w=0.73kg[/tex]
Hence, the required mass of the water required is 0.73kg