Answer:
Vector angular momentum about this axis of the sphere is:
L= 3.76[tex]\hat k[/tex] kg-m²/sec
Explanation:
The formula for the moment of inertia of a sphere is:
[tex]I=\frac{2}{5}\times MR^2[/tex]
Given:
Mass of the sphere = 13.5 kg
Radius of the sphere = 0.490 m
Thus, moment of inertia :
[tex]I=\frac{2}{5}\times 13.5\times (0.490)^2 kg\ m^2[/tex]
[tex]I=1.29654 kg\ m^2[/tex]
The expression for the angular momentum is:
L=I×ω
Given:
Angular speed(ω) = 2.9 rad/s
I, above calculated = 1.29654 kgm⁻²
Thus, angular momentum is:
L= 1.29654×2.9 kg-m²/sec
L= 3.76 kg-m²/sec
Given, the sphere is turning counterclockwise about the vertical axis. Thus, the direction of the angular momentum will be on the upper side of the plane. ( [tex]+\hat k[/tex] ).
Thus, angular momentum with direction is:
L= 3.76[tex]\hat k[/tex] kg-m²/sec