Answer:
hence initial wavelength is [tex]\lambda =4.86\times10^{-12}m[/tex]
Explanation:
shift in wavelength due to compton effect is given by
[tex]\lambda ^{'}-\lambda =\frac{h}{m_{e}c}\times(1-cos\theta )[/tex]
λ' = the wavelength after scattering
λ= initial wave length
h= planks constant
m_{e}= electron rest mass
c= speed of light
θ= scattering angle = 180°
compton wavelength is
[tex]\frac{h}{m_{e}c}= 2.43\times10^{-12}m[/tex]
[tex]\lambda '-\lambda =2.43\times10^{-12}\times(1-cos\theta )[/tex]
[tex]\lambda '-\lambda =2.43\times10^{-12}\times(1+1 )[/tex] ( put cos 180°=-1)
also given λ'=2λ
putting values and solving we get
[tex]\lambda =4.86\times10^{-12}m[/tex]
hence initial wavelength is [tex]\lambda =4.86\times10^{-12}m[/tex]