Answer:
y = [tex]C_1e^{3t}+C_2e^{6t}[/tex] + [tex]\dfrac{1}{18}(t^2+\frac{2t}{6} + \frac{2}{36}+\frac{2t}{3}+\frac{2}{18}+\frac{2}{9})[/tex]
Step-by-step explanation:
y''- 9 y' + 18 y = t²
solution of ordinary differential equation
using characteristics equation
m² - 9 m + 18 = 0
m² - 3 m - 6 m+ 18 = 0
(m-3)(m-6) = 0
m = 3,6
C.F. = [tex]C_1e^{3t}+C_2e^{6t}[/tex]
now calculating P.I.
[tex]P.I. = \frac{t^2}{D^2 - 9D +18}[/tex]
[tex]P.I. = \dfrac{t^2}{(D-3)(D-6)}\\P.I. =\dfrac{1}{18}(1-\frac{D}{3})^{-1}(1-\frac{D}{6})^{-1}(t^2)\\P.I. =\dfrac{1}{18}(1-\frac{D}{3})^{-1}(1+\frac{D}{6}+\frac{D^2}{36}+....)(t^2)\\P.I. =\dfrac{1}{18}(1-\frac{D}{3})^{-1}(t^2+\frac{2t}{6} + \frac{2}{36})\\P.I. =\dfrac{1}{18}(1+\frac{D}{3}+\frac{D^2}{9}+....)(t^2+\frac{2t}{6} + \frac{2}{36})\\P.I. =\dfrac{1}{18}(t^2+\frac{2t}{6} + \frac{2}{36}+\frac{2t}{3}+\frac{2}{18}+\frac{2}{9})[/tex]
hence the complete solution
y = C.F. + P.I.
y = [tex]C_1e^{3t}+C_2e^{6t}[/tex] + [tex]\dfrac{1}{18}(t^2+\frac{2t}{6} + \frac{2}{36}+\frac{2t}{3}+\frac{2}{18}+\frac{2}{9})[/tex]