Respuesta :
We're looking for a solution of the form
[tex]y=\displaystyle\sum_{n\ge0}a_nx^n[/tex]
with derivative
[tex]y'=\displaystyle\sum_{n\ge0}(n+1)a_{n+1}x^n[/tex]
Note that [tex]x=0\implies y(0)=a_0[/tex].
Substituting into the ODE gives
[tex]\displaystyle\sum_{n\ge0}(n+1)a_{n+1}x^n-\sum_{n\ge0}a_nx^{n+2}=0[/tex]
The first series starts with a constant term, while the second starts with a quadratic term, so we should pull out the first two terms of the first series and have it start at [tex]n=2[/tex], then shift the index on the second series to achieve the same effect, which allows us to condense the left side as
[tex]a_1+2a_2x+\displaystyle\sum_{n\ge2}\bigg((n+1)a_{n+1}-a_{n-2}\bigg)x^n=0[/tex]
so that the series solution's coefficients are given according to the recurrence
[tex]\begin{cases}a_0=a_0\\a_1=a_2=0\\(n+1)a_{n+1}-a_{n-2}=0&\text{for }n\ge2\end{cases}[/tex]
We can simplify the latter equation somewhat to get it in terms of [tex]a_n[/tex]:
[tex]a_n=\dfrac{a_{n-3}}n\text{ for }n\ge3[/tex]
This shows dependency between coefficients that are 3 indices apart, so we check 3 cases:
- If [tex]n=3k+1[/tex], where [tex]k\ge0[/tex] is an integer, then
[tex]k=0\implies n=1\implies a_1=0[/tex]
[tex]k=1\implies n=4\implies a_4=\dfrac{a_1}4=0[/tex]
and so on for all such [tex]n[/tex], giving
[tex]a_{3k+1}=0[/tex]
- If [tex]n=3k+2[/tex], then
[tex]k=0\implies n=2\implies a_2=0[/tex]
and we get the same conclusion as before,
[tex]a_{3k+2}=0[/tex]
- If [tex]n=3k[/tex], then
[tex]k=0\implies n=0\impiles a_0=a_0[/tex]
[tex]k=1\implies n=3\implies a_3=\dfrac{a_0}3[/tex]
[tex]k=2\implies n=6\implies a_6=\dfrac{a_3}6=\dfrac{a_0}{3\cdot6}=\dfrac{a_0}{3^2(2\cdot1)}[/tex]
[tex]k=3\implies n=9\implies a_9=\dfrac{a_6}9=\dfrac{a_0}{3^3(3\cdot2\cdot1)}a_0[/tex]
and so on, with the general pattern
[tex]a_{3k}=\dfrac{a_0}{3^kk!}[/tex]
Then the series solution is
[tex]y=\displaystyle\sum_{k\ge0}\bigg(a_{3k}x^{3k}+a_{3k+1}x^{3k+1}+a_{3k+2}x^{3k+2}\bigg)[/tex]
[tex]y=\displaystyle a_0\sum_{k\ge0}\frac{x^{3k}}{3^kk!}[/tex]
[tex]y=\displaystyle a_0\sum_{k\ge0}\frac{\left(\frac{x^3}3\right)^k}{k!}[/tex]
whose first four terms are
[tex]\boxed{a_0\left(1+\dfrac{x^3}3+\dfrac{x^6}{18}+\dfrac{x^9}{162}\right)}[/tex]