Answer: 0.0036
Explanation:
Initial moles of [tex]PCl_5[/tex] = 2 mole
Moles of [tex]Cl_2[/tex] at equilibrium= 0.25 mole
Volume of container = 10 L
Initial concentration of [tex]PCL_5=\frac{moles}{volume}=\frac{2moles}{10L}=0.2M[/tex]
equilibrium concentration of [tex]Cl_2=\frac{moles}{volume}=\frac{0.25moles}{10L}=0.025M[/tex]
The given balanced equilibrium reaction is,
[tex]PCL_5(g)\rightleftharpoons PCl_3(g)+Cl_2(g)[/tex]
Initial conc. 0.2 M 0 0
At eqm. conc. (0.2-x) M xM xM
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[Cl_2]\times [PCl_3]}{[PCl_5]}[/tex]
[tex]K_c=\frac{x\times x}{0.2-x}[/tex]
We are given : x = 0.025 M
Now put all the given values in this expression, we get :
[tex]K_c=\frac{0.025\times 0.025}{0.2-0.025}[/tex]
[tex]K_c=0.0036[/tex]
Thus the value of the equilibrium constant is 0.0036.