Answer:
The unit vector in the opposite direction of u is:
[tex]\vec{u} =-\frac{1}{\sqrt{23}}<-3i-4,\sqrt{2}>[/tex]
Step-by-step explanation:
To find the unit vector suppose u that points in the opposite direction as v
[tex]\vec{v}=<-3i,-4\sqrt{2}>[/tex]
we use the formula:
[tex]\vec{u} =-\frac{1}{||\vec{v}||}\vec{v}[/tex]
Finding [tex]||\vec{v}||[/tex]
[tex]||\vec{v}|| = \sqrt{x^2+y^2}\\||\vec{v}|| = \sqrt{(3i)^2+(4\sqrt{2}^2} \\||\vec{v}|| = \sqrt{9i^2+(16*2)}\\ i^2 = -1\\||\vec{v}|| = \sqrt{9(-1)+32}\\||\vec{v}|| = \sqrt{-9+32}\\||\vec{v}|| = \sqrt{23}[/tex]
[tex]\vec{u} =-\frac{1}{\sqrt{23}}<-3i,-4\sqrt{2}>[/tex]
The unit vector in the opposite direction of u is:
[tex]\vec{u} =-\frac{1}{\sqrt{23}}<-3i,-4\sqrt{2}>[/tex]