The left side of the heart creates a pressure of 120 mm Hg by exerting a force directly on the blood over an effective area of 15.0 cm2. What force does it exert to accomplish this

Respuesta :

Answer:

23.99N

Explanation:

Given:

Pressure created by the heart = 120mm of hg

converting the pressure into the standard unit of N/m²

1mm of hg = [tex]\frac{1}{760}atm=\frac{1}{760}\times 1.013\times10^5N/m^2[/tex]

now, 120 mm of hg in N/m² will be

120mm of hg = [tex]\frac{12}{760}\times 1.013\times10^5N/m^2[/tex]

also

given effective area = 15.0 cm² = 15 × 10⁻⁴m²

Now,

Force = Pressure × Area

thus,

Force exerted will be =  [tex]\frac{120}{760}\times 1.013\times10^5N/m^2[/tex] ×  15 × 10⁻⁴m²

or

Force exerted will be = 23.99N

The force that it exerts is about 24.0 N

[tex]\texttt{ }[/tex]

Further explanation

Let's recall Hydrostatic Pressure formula as follows:

[tex]\boxed{ P = \rho g h}[/tex]

where:

P = hydrosatic pressure ( Pa )

ρ = density of  fluid ( kg/m³ )

g = gravitational acceleration ( m/s² )

h = height of a column of liquid ( m )

Let us now tackle the problem!

[tex]\texttt{ }[/tex]

Given:

blood pressure = P = 120 mmHg = 0.12 mHg

effective area = A = 15.0 cm² = 15.0 × 10⁻⁴ m²

density of mercury = ρ = 13600 kg/m³

gravitational acceleration = g = 9.8 m/s²

Asked:

force = ?

Solution:

We will use this following formula to solve this problem:

[tex]P = F \div A[/tex]

[tex]F = P A[/tex]

[tex]F = \rho g h A[/tex]

[tex]F = 13600 \times 9.8 \times 0.12 \times ( 15.0 \times 10^{-4} )[/tex]

[tex]F \approx 24.0 \texttt{ N}[/tex]

[tex]\texttt{ }[/tex]

Conclusion :

The force that it exerts is about 24.0 N

[tex]\texttt{ }[/tex]

Learn more

  • Buoyant Force : https://brainly.com/question/13922022
  • Kinetic Energy : https://brainly.com/question/692781
  • Volume of Gas : https://brainly.com/question/12893622
  • Impulse : https://brainly.com/question/12855855
  • Gravity : https://brainly.com/question/1724648

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Pressure

Ver imagen johanrusli
ACCESS MORE