Answer:[tex]-8\hat{i}-6\hat{k}[/tex]
[tex]\theta =\tan^{-1}\left ( \frac{3}{4} \right )[/tex]
Step-by-step explanation:
Given
Velocity of hailstones fall[tex]\left ( V_h\right )=2\hat{i}-6\hat{k}[/tex] m/s
Velocity of cyclist [tex]\left ( V_c\right )=10\hat{i}[/tex] m/s
Therefore
Velocity of hail with respect to cyclist[tex]\left ( V_{hc}\right )[/tex]
[tex]V_{hc}=V_h-V_c[/tex]
[tex]V_{hc}=2\hat{i}-6\hat{k}-10\hat{i}[/tex]
[tex]V_{hc}=-8\hat{i}-6\hat{k}[/tex]
and angle of hails falling relative to the cyclist is given by
[tex]\theta =\tan^{-1}\left ( \frac{3}{4}\right )[/tex]
[tex]\theta [/tex] is the angle made with the vertical