Answer with Step-by-step explanation:
We are given that A, B and C are subsets of universal set U.
We have to prove that
[tex] A\cap (B-C)=(A\cap B)-(A\cap C)[/tex]
Proof:
Let x[tex]\in A\cap (B-C)[/tex]
Then [tex]x\in A [/tex] and [tex]x\in(B-C)[/tex]
When [tex] x\in ( B-C) [/tex]then [tex]x\in B[/tex] but [tex]x\notin C[/tex]
Therefore, [tex]x\in( A\cap B)[/tex] but [tex] x\notin (A\cap C)[/tex]
Hence, it is true.
Conversely , Let [tex]x\in(A\cap B)[/tex] but [tex]x\notin(A\cap C)[/tex]
Then [tex]x\in A[/tex] and [tex]x\in B[/tex]
When [tex]x\notin ( A\cap C) [/tex] then [tex]x\notin C[/tex]
Therefor,[tex]x\in A\cap (B-C)[/tex]
Hence, the statement is true.