Prove each statement that is true and find a counterexample for each statement that is false. Assume all sets are subsets of a universal set U.

For or all sets A, B, and C, A∩(B−C) = (A∩ B)−(A∩C)

Hint: The statement is true. Sketch of proof: If x ∈ A∩(B−C), then x∈A and x∈B and x∉C. So it is true that x∈A and x∈B and that x∈A and x∉C.Conversely, if x ∈ (A∩ B)−(A∩C), then x∈A and x∈B, but x ∉ A∩C, and so x∉C.

Respuesta :

Answer with Step-by-step explanation:

We are given that A, B and C are subsets of universal set U.

We have to prove that

[tex] A\cap (B-C)=(A\cap B)-(A\cap C)[/tex]

Proof:

Let x[tex]\in A\cap (B-C)[/tex]

Then [tex]x\in A [/tex] and [tex]x\in(B-C)[/tex]

When [tex] x\in ( B-C) [/tex]then [tex]x\in B[/tex] but [tex]x\notin C[/tex]

Therefore, [tex]x\in( A\cap B)[/tex] but [tex] x\notin (A\cap C)[/tex]

Hence, it is true.

Conversely , Let [tex]x\in(A\cap B)[/tex] but [tex]x\notin(A\cap C)[/tex]

Then [tex]x\in A[/tex] and [tex]x\in B[/tex]

When [tex]x\notin ( A\cap C) [/tex] then [tex]x\notin C[/tex]

Therefor,[tex]x\in A\cap (B-C)[/tex]

Hence, the statement is true.

ACCESS MORE