Respuesta :
Answer:
[tex]\^v=-\frac{3}{5}i+\frac{4}{5}j[/tex]
Step-by-step explanation:
We have the following vector
[tex]v=3\sqrt{2}i-4\sqrt{2}j[/tex]
First we calculate its magnitude
The magnitude of the vector v will be
[tex]|v|=\sqrt{(3\sqrt{2})^2 + (4\sqrt{2})^2}\\\\|v|=\sqrt{9*2+16*2}\\\\|v|=\sqrt{18+32}\\\\|v|=5\sqrt{2}[/tex]
Now to create a unitary vector in the opposite direction to v, we divide the vector v between the negative of its magnitude
we call this new vector "[tex]\^v[/tex]"
[tex]\^v=\frac{3\sqrt{2}}{-5\sqrt{2}}i-\frac{4\sqrt{2}}{-5\sqrt{2}}j[/tex]
[tex]\^v=-\frac{3}{5}i+\frac{4}{5}j[/tex]