Answer:
See explanation
Step-by-step explanation:
We can express
[tex] \tan( \theta) = \frac{ \sin \theta}{ \cos \theta } [/tex]
in so many ways using trigonometric identities.
Let us rewrite to obtain:
[tex]\tan( \theta) = \frac{1}{ \cos \theta } \times \sin \theta[/tex]
This implies that
[tex]\tan( \theta) = \sec \theta \sin \theta[/tex]
When we multiply the right side by
[tex] \frac{ \cos \theta}{ \cos \theta} [/tex]
we get:
[tex]\tan( \theta) = \frac{ \sin \theta \cos \theta }{ \cos ^{2} \theta } [/tex]
[tex]\tan( \theta) = \frac{ \sin 2\theta }{ 2 - 2\sin^{2} \theta } [/tex]
Etc