Answer:
Average [tex]\bar{x}[/tex] = 11.25 cm
standard deviation = 0.129 cm
Explanation:
The data provided in the question is:
x₁ = 11.4 cm
x₂ = 11.3 cm
x₃ = 11.2 cm
x₄ = 11.1 cm
total number of data points, N = 4
Now, the average is calculated as:
Average [tex]\bar{x}[/tex] = [tex]\frac{sum\ of\ all\ the\ data\ points }{number\ of\ data\ points}[/tex]
substituting the values in the above formula we get,
Average [tex]\bar{x}[/tex] = [tex]\frac{11.4cm+11.3cm+11.2cm+11.1cm }{4}[/tex]
Average [tex]\bar{x}[/tex] = 11.25 cm
Now the standard deviation is calculated as:
standard deviation = [tex]\sqrt\frac{\sum_{i=1}^{4} \left(x_i - \bar x \right )^2}{N-1}[/tex]
substituting the values in the above equation we get,
standard deviation = [tex]\sqrt\frac{\left(11.4 - 11.25 \right )^2 + \left(11.3 - 11.25 \right )^2 + \left(11.2 - 11.25 \right )^2 + \left(11.1 - 11.25 \right )^2}{3}[/tex]
or
standard deviation = 0.129 cm