Find the equation of the line that passes through the points (-3,0) and (4,2). Using point slope formula

Answer:
[tex]\large\boxed{y-0=\dfrac{2}{7}(x+3)}\\\downarrow\\\boxed{y=\dfrac{2}{7}x+\dfrac{6}{7}}[/tex]
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slopei
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
======================================
We have the points (-3, 0) and (4, 2).
Substitute:
[tex]m=\dfrac{2-0}{4-(-3)}=\dfrac{2}{7}[/tex]
Put the value of the slope and the coordinates of the point (-3, 0) to the equation:
[tex]y-0=\dfrac{2}{7}(x-(-3))[/tex]
[tex]y-0=\dfrac{2}{7}(x+3)[/tex]
Converto to the slope-intercept form (y = mx + b):
[tex]y=\dfrac{2}{7}x+\dfrac{6}{7}[/tex]