Which of the following is the simplified form of ^7 radical x • ^7 radical x • ^7 radical x

For this case we must find an expression equivalent to:
[tex]\sqrt [7] {x} * \sqrt [7] {x} * \sqrt [7] {x}[/tex]
By definition of properties of powers and roots we have:
[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
So, rewriting the given expression we have:
[tex]x ^ {\frac {1} {7}} * x ^ {\frac {1} {7}} * x ^ {\frac {1} {7}} =[/tex]
To multiply powers of the same base we put the same base and add the exponents:
[tex]x ^ {\frac {1} {7} + \frac {1} {7} + \frac {1} {7}} =\\x ^ {\frac {3} {7}}[/tex]
Answer:
Option 1
Answer: Option 1.
Step-by-step explanation:
We need to remember that:
[tex]\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]
Then, having the expression:
[tex]\sqrt[7]{x}*\sqrt[7]{x} *\sqrt[7]{x}[/tex]
We can rewrite it in this form:
[tex]=x^{\frac{1}{7}}*x^{\frac{1}{7}} *x^{\frac{1}{7}}[/tex]
According to the Product of powers property:
[tex](a^m)(a^n)=a^{(m+n)}[/tex]
Then, the simplied form of the given expression, is:
[tex]=x^{(\frac{1}{7}+\frac{1}{7}+\frac{1}{7})}=x^\frac{3}{7}[/tex]