Answer:
74.86°C
Explanation:
P₂ = Vapour pressure of water at sea level = 760 mmHg
P₁ = Pressure at base camp = 296 mmHg
T₂ = Temperature of water = 373 K
ΔH°vap for H2O = 40.7 kJ/mol = 40700 J/mol
R = Gas constant = 8.314 J/mol K
From Claussius Clapeyron equation
[tex]ln\frac{P_2}{P_1}=\frac{\Delta H}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)\\\Rightarrow ln\frac{760}{296}=\frac{40700}{8.314}\left(\frac{1}{T_1}-\frac{1}{373}\right)\\\Rightarrow ln\frac{760}{296}\times \frac{8.314}{40700}+\frac{1}{373}=\frac{1}{T_1}\\\Rightarrow 0.0028735=\frac{1}{T_1}\\\Rightarrow T_1=347.996\ K[/tex]
T₁ = 347.996 K = 74.86°C
∴Water will boil at 74.86°C