The ODE is separable, with
[tex]\dfrac{\mathrm dP}{\mathrm dt}=P(4-P)\implies\dfrac{\mathrm dP}{P(4-P)}=\mathrm dt[/tex]
Split up the left side into partial fractions:
[tex]\dfrac1{P(4-P)}=\dfrac14\left(\dfrac1P+\dfrac1{4-P}\right)[/tex]
Then integrating both sides gives
[tex]\displaystyle\frac14\int\left(\frac1P-\frac1{P-4}\right)\,\mathrm dP=\int\mathrm dt[/tex]
[tex]\dfrac14(\ln|P|-\ln|P-4|)=t+C[/tex]
[tex]\dfrac14\ln\left|\dfrac P{P-4}\right|=t+C[/tex]
[tex]\dfrac P{P-4}=Ce^{4t}[/tex]
[tex]P=\dfrac{4e^{4t}}{e^{4t}-C}[/tex]
Given that [tex]P(0)=1[/tex], we find
[tex]1=\dfrac4{1-C}\implies C=-3[/tex]
so that the population is given by the model
[tex]\boxed{P(t)=\dfrac{4e^{4t}}{e^{4t}+3}}[/tex]
or
[tex]\boxed{P(t)=\dfrac4{1+3e^{-4t}}}[/tex]