Respuesta :
Answer:
(a): the mug hits the floor 0.752m away from the end of the bar.
(b): the speed of the mug at impact are:
V= 4.87 m/s
direction= 70.82º below the horizontal.
Explanation:
Vx= 1.6 m/s
Vy=?
h= 1.1 m
g= 9.8 m/s²
t is the fall time
[tex]t=\sqrt{\frac{2*h}{g} }[/tex]
t=0.47 sec
Vy= g*t
Vy= 4.6 m/s
[tex]V=\sqrt{Vx^{2} +Vy^{2}[/tex]
V= 4.87 m/s
α= tan⁻¹(Vy/Vx)
α= -70.82º
Answer:
(a) x = 0.758 m
(b) v = 4.9 m/s, α = 70.97° below the horizontal
Explanation:
The movement is semi-parabolic because the initial velocity is horizontal.
The equations of semiparabolic motion are:
x movement : uniform line movement
x= vx*t Equation (1)
Where:
x: horizontal position in meters (m)
t : time (s)
vx: horizontal velocity in m/s
y movement: free fall motion
y = (1/2)g*t² Equation (2)
vy= g*t Equation (3)
Where:
y: vertical position in meters (m)
t : time in seconds (s)
vy: vertical velocity in m/s
g: acceleration due to gravity in m/s²
Data
Vx = 1.6 m/s
y = 1.1 m
g = 9.8 m/s²
Time it takes for the beer mug to hit the floor
We replace in the formula (2)
y = (1/2)g*t²
1.1 = (1/2) (9.8)*t²
t² =(2*1.1)/ (9.8)
[tex]t = \sqrt{\frac{2*1.1}{9.8} }[/tex]
t= 0.474 s
Horizontal distance the mug reaches
We replace vx= 1.6 m/s and t= 0.474 s in the formula (1):
x = vx*t = (1.6) *(0.474)
x = 0.758 m
Speed (v) and direction (α) of the mug at impact :
In the Equation (3): vy= g*t = 9.8* 0.474 = 4.645 m/s (downward)
[tex]v = \sqrt{v_{x}^{2}+v_{y}^{2} }[/tex]
[tex]v = \sqrt{1.6^{2}+4.645^{2} }[/tex]
v = 4.9 m/s
[tex]\alpha = tan^{-1} (\frac{v_{y} }{v_{x} } )[/tex]
[tex]\alpha = tan^{-1} (\frac{-4.645 }{1.6} )[/tex]
α = - 70.97°
α = below the horizontal