4.
A 48 inch long cylindrical shaped cannon has a diameter of 4 inches. There are two 3 inch diameter cannonballs inside it. How much empty space is in the cannon barrel (round to the nearest hundredth and use 3.14 for pi)?

Respuesta :

Answer:

[tex]574.62\ in^3[/tex]

Step-by-step explanation:

First we calculate the volume of the cylinder.

[tex]V=\pi r^2*l[/tex]

Where r is the radius and l is the length of the cylinder.

We know that:

[tex]r = \frac{diameter}{2}[/tex]

[tex]r = \frac{4}{2}[/tex]

[tex]r = 2\ in[/tex]

Then:

[tex]V=3.14* 2^2*48[/tex]

[tex]V=602.88\ in^3[/tex]

Assuming that the cannon balls are spherical then the volume of the 2 spheres is:

[tex]V=2*\frac{4}{3}\pi r^3[/tex]

[tex]V=2*\frac{4}{3}(3.14)(\frac{3}{2})^3[/tex]

[tex]V=2*\frac{4}{3}(3.14)(\frac{3}{2})^3[/tex]

[tex]V=28.26\ in^3[/tex]

So the space left inside the cannon is

[tex]V=602.88\ in^3 - 28.26\ in^3\\\\V=574.62\ in^3[/tex]

ACCESS MORE