Answer:
[tex]574.62\ in^3[/tex]
Step-by-step explanation:
First we calculate the volume of the cylinder.
[tex]V=\pi r^2*l[/tex]
Where r is the radius and l is the length of the cylinder.
We know that:
[tex]r = \frac{diameter}{2}[/tex]
[tex]r = \frac{4}{2}[/tex]
[tex]r = 2\ in[/tex]
Then:
[tex]V=3.14* 2^2*48[/tex]
[tex]V=602.88\ in^3[/tex]
Assuming that the cannon balls are spherical then the volume of the 2 spheres is:
[tex]V=2*\frac{4}{3}\pi r^3[/tex]
[tex]V=2*\frac{4}{3}(3.14)(\frac{3}{2})^3[/tex]
[tex]V=2*\frac{4}{3}(3.14)(\frac{3}{2})^3[/tex]
[tex]V=28.26\ in^3[/tex]
So the space left inside the cannon is
[tex]V=602.88\ in^3 - 28.26\ in^3\\\\V=574.62\ in^3[/tex]