Respuesta :
Answer:
a)
[tex] \frac{2}{3} [/tex]
b)
[tex] \frac{2}{3} [/tex]
Step-by-step explanation:
a) The first part requires that we use line integral to evaluate directly.
The line integral is
[tex] \int_C xydx + {x}^{2} {y}^{3} dy[/tex]
where C is counterclockwise around the triangle with vertices (0, 0), (1, 0), and (1, 2)
The boundary of integration is shown in the attachment.
Our first line integral is
[tex]L_1 = \int_ {(0,0)}^{(1,0)} xydx + {x}^{2} {y}^{3} dy[/tex]
The equation of this line is y=0, x varies from 0 to 1.
When we substitute y=0 every becomes zero.
[tex] \therefore \: L_1 =0[/tex]
Our second line integral is
[tex]L_2 = \int_ {(1,0)}^{(1,2)} xydx + {x}^{2} {y}^{3} dy[/tex]
The equation of this line is:
[tex]x = 0 \implies \: dx = 0[/tex]
y varies from 1 to 2.
We substitute the boundary and the values to get:
[tex]L_2 = \int_ {1}^{2}1 \cdot y(0) + {1}^{2} \cdot \: {y}^{3} dy[/tex]
[tex]L_2 = \int_ {1}^2 {y}^{3} dy = \frac{8}{3} [/tex]
The 3rd line integral is:
[tex]L_3 = \int_ {(1,2)}^{(0,0)} xydx + {x}^{2} {y}^{3} dy[/tex]
The equation of this line is
[tex]y = 2x \implies \: dy = 2dx[/tex]
x varies from 0 to 1.
We substitute to get:
[tex]L_3 = \int_ {1}^{0} x \cdot \: 2xdx + {x}^{2} {(2x)}^{3}(2 dx)[/tex]
[tex]L_3 = \int_ {1}^{0} 8 {x}^{5} + 2 {x}^{2} dx = - 2[/tex]
The value of the line integral is
[tex]L = L_1 + L_2 + L_3[/tex]
[tex]L = 0 + \frac{8}{3} + - 2 = \frac{2}{3} [/tex]
b) The second part requires the use of Green's Theorem to evaluate:
[tex] \int_C xydx + {x}^{2} {y}^{3} dy[/tex]
Since C is a closed curve with counterclockwise orientation, we can apply the Green's Theorem.
This is given by:
[tex] \int_C \: Pdx +Q \: dy = \int \int_ R \: Q_y - P_x \: dA[/tex]
[tex]\int_C \: xydx + {x}^{2} {y}^{3} \: dy = \int \int_ R \: 3 {x}^{2} {y}^{2} - y \: dA[/tex]
We choose our region of integration parallel to the y-axis.
[tex]\int_C \: xydx + {x}^{2} {y}^{3} \: dy = \int_ 0^{1} \int_ 0^{2x} \: 3 {x}^{2} {y}^{2} - y \: dydx[/tex]
[tex]\int_C \: xydx + {x}^{2} {y}^{3} \: dy = \int_ 0^{1} \: {x}^{2} {y}^{3} - \frac{1}{2} {y}^{2} |_ 0^{2x} dx[/tex]
[tex]\int_C \: xydx + {x}^{2} {y}^{3} \: dy = \int_ 0^{1} \: 8{x}^{5} - 2 {x}^{2} dx = \frac{2}{3} [/tex]

The line integral in both cases is [tex]\dfrac{2}{3}[/tex]
a) The line integral is [tex]L=\int_{C}^{}xydx+x^2y^3dy[/tex] where C is counterclockwise around the triangle with vertices [tex](0, 0), (1, 0)[/tex] and [tex](1, 2)[/tex].
The boundaries of integration is shown in the attached image.
Our first line integral is
[tex]L_{1}=\int_{(0,0)}^{(1,0)}xydx+x^2y^3dy[/tex]
The equation of this line is [tex]y=0[/tex], [tex]x[/tex] varies from [tex]0[/tex] to [tex]1[/tex].
[tex]L_{1}=0[/tex]
Our second line integral is
[tex]L_{2}=\int_{(1,0)}^{(1,2)}xydx+x^2y^3dy[/tex]
The equation of this line is [tex]x=0[/tex] and [tex]y[/tex] varies from [tex]1[/tex] to [tex]2[/tex].
[tex]L_{2}=\dfrac{8}{3}[/tex]
The third line integral is
[tex]L_{3}=\int_{1}^{0}xydx+x^2y^3dy[/tex]
The equation of this line is [tex]y=2x[/tex] and [tex]x[/tex] varies from [tex]0[/tex] to [tex]1[/tex].
[tex]L_{3}=-2[/tex]
The value of the line integral is
[tex]L=L_{1}+L_{2}+L_{3}=0+\frac{8}{3}+(-2)=\frac{2}{3}[/tex]
b) The second part requires the use of Green's Theorem to evaluate:
This is given by:
[tex]\int_{C}^{}P\;dx+Q\;dy=\int \int_{R}^{}Q_{y}-P_{x}\;dA\\ \\ \int_{C}^{}xy\;dx+x^2y^3\;dy=\int \int_{R}^{}3x^2y^2-y\;dA[/tex]
We choose our region of integration parallel to the [tex]y[/tex]-axis.
[tex]\int_{C}^{}xy\;dx+x^2y^3\;dy\\\\=\int_{0}^{1}\int_{0}^{2x}3x^2y^2-y\;dydx\\ \\ =\int_{0}^{1}x^2y^3-\frac{1}{2}\left | y^2 \right |_{0}^{2x}\;dx\\ \\ =\int_{0}^{1}8x^5-2x^2\;dx=\frac{2}{3}[/tex]
Learn more about limits and Derivatives.
https://brainly.com/app/ask?q=limits+and+Derivatives
