find the values of the six trigonometric functions for angle Ѳ, when PQ=48 and QR=64

Answer:
Here's what I get
Step-by-step explanation:
∆PQR is a right triangle.
PR² = PQ² + QR² = 48² + 64² = 2304 + 4096 = 6400
PR = √6400 = 80
PQ:QR:PR = 48:64:80 = 3:4:5
We can consider ∆PQR as a 3:4:5 triangle.
[tex]\sin \theta = \dfrac{4}{5} \\\\\cos \theta = \dfrac{3}{5}\\\\\tan \theta = \dfrac{4}{3}\\\\\cot \theta = \dfrac{3}{4} \\\\\csc \theta = \dfrac{5}{4}\\\\\sec \theta = \dfrac{5}{3}[/tex]
Answer:
The formula used for Pythagoras Theorem.
(Hypotenuse)² = (Base)² + (Perpendicular)²
We have
PQ = 48, QR = 64 and PR = ?
⇒ (PR)² = (PQ)² + (QR)²
⇒ (PR)² = (48)² + (64)²
⇒ (PR)² = 2304 - 4096 = 64 00
⇒ PR = 80
The six trigonometric functions we have are: