Jonathan must determine the solutions of the quadratic equation 0=4x^2+3x+8 which of the following is a solution to the equation.

Answer:
option A
Step-by-step explanation:
Using quadratic formula:
[tex]x=\frac{-b+-\sqrt{b^{2}-4*a*c} }{2*a}[/tex]
We will have 2 solutions.
0=4x^2+3x+8 a=4 b=3 c=8
[tex]x_{1}=\frac{-3+\sqrt{3^{2}-4*4*8} }{2*4}\\\\x_{2}=\frac{-3-\sqrt{3^{2}-4*4*8} }{2*4}[/tex]
We have:
[tex]x_{1}=\frac{-3+\sqrt{9-128} }{8}\\\\x_{2}=\frac{-3-\sqrt{9-128} }{8}\\\\[/tex]
So
[tex]x_{1}=\frac{-3+\sqrt{-119} }{8}\\\\x_{2}=\frac{-3-\sqrt{-119} }{8}\\[/tex]
The solutions are not real numbers.
We know:
[tex]i=\sqrt{-1}[/tex]
We can write:
[tex]x_{1}=\frac{-3+i\sqrt{119} }{8}\\\\x_{2}=\frac{-3-i\sqrt{119} }{8}\\[/tex]
so the option is A:
[tex]x_{2}=\frac{-3-i\sqrt{119} }{8}[/tex]