Respuesta :
Answer:
[tex]\displaystyle f'(x) = 2[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Constant]: [tex]\displaystyle \lim_{x \to c} b = b[/tex]
Differentiation
- Derivatives
- Derivative Notation
- Definition of a Derivative: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = 2x + 3[/tex]
Step 2: Differentiate
- Substitute in function [Definition of a Derivative]: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{[2(x + h) + 3] - (2x + 3)}{h}[/tex]
- Expand: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{2x + 2h + 3 - 2x - 3}{h}[/tex]
- Combine like terms: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{2h}{h}[/tex]
- Simplify: [tex]\displaystyle f'(x) = \lim_{h \to 0} 2[/tex]
- Evaluate limit [Limit Rule - Constant]: [tex]\displaystyle f'(x) = 2[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation