The orbit of a certain a satellite has a semimajor axis of 1.7 x 107 m and an eccentricity of 0.25. What are the satellite's perigee and apogee (in km)?

Respuesta :

Answer:

The satellite's perigee and apogee are[tex]2.13\times10^{4}\ km[/tex] and [tex]1.3\times10^{4}\ km[/tex]

Explanation:

Given that,

Semi major axis[tex]a = 1.7\times10^{7}\ m[/tex]

Eccentricity = 0.25

We calculate the satellite's perigee

Using formula of perigee

[tex]Perigee=a(1+e)[/tex]

[tex]Perigee=1.7\times10^{7}(1+0.25)[/tex]

[tex]Perigee=2.13\times10^{7}\ m[/tex]

[tex]Perigee=2.13\times10^{4}\ km[/tex]

Using formula of apogee

[tex]Apogee =a(1-e)[/tex]

[tex]Apogee =1.7\times10^{7}(1-0.25)[/tex]

[tex]Apogee =12750000[/tex]

[tex]Apogee=1.3\times10^{7}\ m[/tex]

[tex]Apogee=1.3\times10^{4}\ km[/tex]

Hence, The satellite's perigee and apogee are[tex]2.13\times10^{4}\ km[/tex] and [tex]1.3\times10^{4}\ km[/tex]