Respuesta :
Answer:
The length of the ladder is 10 m.
Step-by-step explanation:
Let x shows the distance of the top of ladder from the bottom of base of the wall, y shows the distance of the bottom of ladder from the base of the wall and l is the length of the ladder,
Given,
[tex]\frac{dx}{dt}=-0.675\text{ m/s}[/tex]
[tex]\frac{dy}{dt}=0.9\text{ m/s}[/tex]
y = 6 m,
Since, the wall is assumed perpendicular to the ground,
By the pythagoras theorem,
[tex]l^2=x^2+y^2[/tex]
Differentiating with respect to t ( time ),
[tex]0=2x\frac{dx}{dt}+2y\frac{dy}{dt}[/tex] ( the length of wall would be constant )
By substituting the value,
[tex]0=2x(-0.675)+2(6)(0.9)[/tex]
[tex]0=-1.35x+10.8[/tex]
[tex]\implies x=\frac{10.8}{1.35}=8[/tex]
Hence, the length of the ladder is,
[tex]L=\sqrt{x^2+y^2}=\sqrt{8^2+6^2}=\sqrt{64+36}=\sqrt{100}=10\text{ m}[/tex]
Answer:
The length of ladder=8m.
Step-by-step explanation:
Given
The rate at which the top of a ladder slides down a vertical wall,[tex]\frac{\mathrm{d}z}{\mathrm{d}t}[/tex]= 0.675m/s
The distance of bottom of ladder from the wall,x=6m
The rate at which it slides away from the wall ,[tex]\frac{\mathrm{d}x}{\mathrm{d}t}[/tex]=0.9m/s
Let length of ladder =z
Length of wall=y
Distance between foot of ladder and wall=x
By using pythogorous theorem
[tex]x^2+y^2=z^2[/tex]
Differentiate w.r.t time
[tex]x\frac{\mathrm{d}x}{\mathrm{d}t}=z\frac{\mathrm{d}z}{\mathrm{d}t}[/tex]
y does not change hence, [tex]\frac{\mathrm{d}y}{\mathrm{d}t}=0[/tex]
[tex]6\times 0.9=z\times 0.675[/tex]
[tex]z=\frac{5.4}{0.675}[/tex]
z=8 m
Hence, the length of ladder=8m.