Explanation:
It is given that,
Electric field, E = 554 N/C
Time, [tex]t=52\ ns=52\times 10^{-9}\ s[/tex]
Electric force, F = qE
For both electron and proton, [tex]F=1.6\times 10^{-19}\ C\times 554\ N/C[/tex]
[tex]F=8.86\times 10^{-17}\ N[/tex]
For electron, [tex]F=m_ea_e[/tex]
[tex]a_e=\dfrac{F}{m_e}[/tex]
[tex]a_e=\dfrac{8.86\times 10^{-17}\ N}{9.1\times 10^{-31}\ kg}[/tex]
[tex]a_e=9.73\times 10^{13}\ m/s^2[/tex]
Using first equation of motion as :
[tex]v=u+at[/tex]
u = 0
[tex]v=9.73\times 10^{13}\ m/s^2\times 52\times 10^{-9}\ s[/tex]
v = 5059600 m/s
or
v = 5.05 × 10⁶ m/s
For proton :
[tex]F=m_pa_p[/tex]
[tex]a_p=\dfrac{F}{m_e}[/tex]
[tex]a_p=\dfrac{8.86\times 10^{-17}\ N}{1.67\times 10^{-27}\ kg}[/tex]
[tex]a_p=5.3\times 10^{10}\ m/s^2[/tex]
Using first equation of motion as :
[tex]v=u+at[/tex]
u = 0
[tex]v=5.3\times 10^{10}\ m/s^2\times 52\times 10^{-9}\ s[/tex]
v = 2756 m/s
Hence, this is the required solution.