Substitute [tex]v(x)=x-y(x)+1[/tex], so that
[tex]\dfrac{\mathrm dv}{\mathrm dx}=1-\dfrac{\mathrm dy}{\mathrm dx}[/tex]
Then the resulting ODE in [tex]v(x)[/tex] is separable, with
[tex]1-\dfrac{\mathrm dv}{\mathrm dx}=v^2\implies\dfrac{\mathrm dv}{1-v^2}=\mathrm dx[/tex]
On the left, we can split into partial fractions:
[tex]\dfrac12\left(\dfrac1{1-v}+\dfrac1{1+v}\right)\mathrm dv=\mathrm dx[/tex]
Integrating both sides gives
[tex]\dfrac{\ln|1-v|+\ln|1+v|}2=x+C[/tex]
[tex]\dfrac12\ln|1-v^2|=x+C[/tex]
[tex]1-v^2=e^{2x+C}[/tex]
[tex]v=\pm\sqrt{1-Ce^{2x}}[/tex]
Now solve for [tex]y(x)[/tex]:
[tex]x-y+1=\pm\sqrt{1-Ce^{2x}}[/tex]
[tex]\boxed{y=x+1\pm\sqrt{1-Ce^{2x}}}[/tex]