Respuesta :
[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{6}{ h},\stackrel{-1}{ k})\qquad \qquad radius=\stackrel{4}{ r} \\\\[-0.35em] ~\dotfill\\[1em] [x-6]^2+[y-(-1)]^2=4^2\implies (x-6)^2+(y+1)^2=16 \\\\\\ \stackrel{\mathbb{F~O~I~L}}{(x^2-12x+36)}+\stackrel{\mathbb{F~O~I~L}}{(y^2+2y+1)}=16\implies x^2+y^2-12x+2y+37=16 \\\\\\ x^2+y^2-12x+2y+37-16=0\implies x^2+y^2-12x+2y+21=0[/tex]
ANSWER
Option A
EXPLANATION
When a circle has it's center at (h,k) and and radius r units, then its equation in standard form is
[tex] {(x - h)}^{2} + {(y - k)}^{2} = {r}^{2} [/tex]
The given circle has its center at (6,-1) and its radius is r=4 units.
We plug in these values to get
[tex]{(x - 6)}^{2} + {(y - - 1)}^{2} = {4}^{2} [/tex]
[tex]{(x - 6)}^{2} + {(y + 1)}^{2} =16[/tex]
We now expand to obtain
[tex] {x}^{2} - 12x + 36 + {y}^{2} + 2y + 1 = 16[/tex]
[tex] {x}^{2} + {y}^{2} - 12x +2 y + 36 + 1 - 16 = 0[/tex]
[tex]{x}^{2} + {y}^{2} - 12x +2 y + 21 = 0[/tex]
This is the equation in general form of the circle.