Respuesta :
Answer:
[tex]1,800(1.015)^{x}[/tex]
Step-by-step explanation:
we have
[tex]f(x)=1,000(1.015)^{x}[/tex]
[tex]g(x)=800(1.015)^{x}[/tex]
we know that
To find the function that represent the total amount Jack and Suzie will save in x years, adds f(x) and g(x)
so
[tex]f(x)+g(x)=1,000(1.015)^{x}+800(1.015)^{x}[/tex]
[tex]f(x)+g(x)=[1,000+800](1.015)^{x}[/tex]
[tex]f(x)+g(x)=1,800(1.015)^{x}[/tex]
Answer: 1,800(1.015)^{x}
Step-by-step explanation:
we have
f(x)=1,000(1.015)^{x}
g(x)=800(1.015)^{x}
we know that
To find the function that represent the total amount Jack and Suzie will save in x years, adds f(x) and g(x)
so
f(x)+g(x)=1,000(1.015)^{x}+800(1.015)^{x}
f(x)+g(x)=[1,000+800](1.015)^{x}
f(x)+g(x)=1,800(1.015)^{x}