Respuesta :
Answer:
[tex]r=\sqrt[3]{\dfrac{T^2GM}{4\pi^2}}[/tex]
Step-by-step explanation:
Divide by the coefficient of the r factor, then take the cube root.
[tex]T^2=\dfrac{4\pi^2}{GM}r^3 \qquad\text{given formula}\\\\\dfrac{T^2GM}{4\pi^2}=r^3 \qquad\text{divide by the coefficient of the r factor}\\\\r=\sqrt[3]{\dfrac{T^2GM}{4\pi^2}} \qquad\text{cube root}[/tex]
Answer:
The formula to solve r is [tex]r=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}}}[/tex].
Step-by-step explanation:
Consider the provided formula:
[tex]T^{2}=\frac{4\pi^{2}r^{3}}{GM}[/tex]
Where r is the orbit’s mean radius, M is the mass of the planet, and G is the universal gravitational constant.
Multiply both side by GM.
[tex]T^{2}GM=4\pi^{2}r^{3}[/tex]
Further solve the above equation.
[tex]\frac{T^{2}GM}{4\pi^{2}}=r^{3}[/tex]
[tex]\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}}}=r[/tex]
Hence, the formula to solve r is [tex]r=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}}}[/tex].