Respuesta :
Answer:
[tex]\large\boxed{\sqrt{-2}+\sqrt{-18}=4\sqrt2\ i}[/tex]
Step-by-step explanation:
[tex]\sqrt{-1}=i\\\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\===================\\\\\sqrt{-2}+\sqrt{-18}=\sqrt{(2)(-1)}+\sqrt{(9)(2)(-1)}\\\\=\sqrt2\cdot\sqrt{-1}+\sqrt9\cdot\sqrt2\cdot\sqrt{-1}\\\\=\sqrt2\cdot i+3\cdot\sqrt2\cdot i\\\\=i\sqrt2+3i\sqrt2=4i\sqrt2[/tex]
The sum of √-2 and √-18 is 4√2i.
What is the square root of -1?
The square root of -1 is an imaginary number which is represented by i.
√-1=i
Here we have to calculate √-2+√-18
√-2+√-18
=√(-1).2+√(-1).18
=√(-1).√2+√(-1).√18
=i√2+i√18 (as √-1=i where i is imaginary number)
But √18=√(9*2)=√9*√2=3√2
(as √(ab)=√a.√b)
=i√2+i3√2
=√2(i+3i)
=√2*4i
=4√2i
Therefore the sum of √-2 and √-18 is 4√2i.
Learn more about imaginary number
here: https://brainly.com/question/5564133
#SPJ2