Respuesta :
Answer : The percent yield is, 32.79 %
Explanation :
First we have to calculate the moles of [tex]CH_3CH_2OH[/tex].
[tex]\text{Moles of }CH_3CH_2OH=\frac{\text{Mass of }CH_3CH_2OH}{\text{Molar mass of }CH_3CH_2OH}=\frac{65.2g}{46.07g/mole}=1.415mole[/tex]
Now we have to calculate the moles of [tex]CH_3CH_2OCH_2CH_3[/tex]
The balanced chemical reaction will be,
[tex]2CH_3CH_2OH(l)\rightarrow CH_3CH_2OCH_2CH_3(l)+H_2O(l)[/tex]
From the balanced reaction, we conclude that
As, 2 moles of [tex]CH_3CH_2OH[/tex] react to give 1 mole of [tex]CH_3CH_2OCH_2CH_3[/tex]
So, 1.415 moles of [tex]CH_3CH_2OH[/tex] react to give [tex]\frac{1.415}{2}=0.7075[/tex] mole of [tex]CH_3CH_2OCH_2CH_3[/tex]
Now we have to calculate the mass of [tex]CH_3CH_2OCH_2CH_3[/tex]
[tex]\text{Mass of ether}=\text{Moles of ether}\times \text{Molar mass of ether}[/tex]
[tex]\text{Mass of }ether=(0.7075mole)\times (74.12g/mole)=52.44g[/tex]
The theoretical yield of ether, [tex]CH_3CH_2OCH_2CH_3[/tex] = 52.44 g
Now we have to calculate the percent yield of [tex]CH_3CH_2OCH_2CH_3[/tex]
[tex]\%\text{ yield of ether}=\frac{\text{Actual yield of ether}}{\text{Theoretical yield of ether}}\times 100=\frac{17.2g}{52.44g}\times 100=32.79\%[/tex]
Therefore, the percent yield is, 32.79 %