Answer: a) -6, b) 32, c) -48, d) 9, e) -12
Step-by-step explanation:
Since we have given that
A and B are 4 × 4 matrices.
Here,
det (A) = -3
det (B) = 2
We need to find the respective parts:
a) det (AB)
[tex]\mid AB\mid=\mid A\mid.\mid B\mid\\\\\mid AB\mid=-3\times 2=-6[/tex]
b) det (B⁵ )
[tex]\mid B^5\mid=\mid B\mid ^5=2^5=32[/tex]
c) det (2A)
Since we know that
[tex]\mid kA\mid =k^n\mid A\mid[/tex]
so, it becomes,
[tex]\mid 2A\mid =2^4\mid A\mid=16\times -3=-48[/tex]
d) [tex]\bold{det(A^TA)}[/tex]
Since we know that
[tex]\mid A^T\mid=\mid A\mid[/tex]
so, it becomes,
[tex]\mid A^TA\mid=\mid A^T\mid \times \mid A\mid=-3\times -3=9[/tex]
e) det (B⁻¹AB)
As we know that
[tex]\mid B^{-1}\mid =\mid B\mid[/tex]
so, it becomes,
[tex]\mid B^{-1}AB}\mid =\mid B^{-1}.\mid \mid A\mid.\mid B\mid=2\times -3\times 2=-12[/tex]
Hence, a) -6, b) 32, c) -48, d) 9, e) -12