Respuesta :
Answer:
[tex]\large\boxed{(3x^2-2x)(2x^2+3x-1)==6x^4+5x^3-8x^2+2x}[/tex]
Step-by-step explanation:
Use the distributive property and [tex](a^n)(a^m=)=a^{n+m}[/tex]
[tex](3x^2-2x)(2x^2+3x-1)\\\\=(3x^2)(2x^2)+(3x^2)(3x)+(3x^2)(-1)+(-2x)(2x^2)+(-2x)(3x)+(-2x)(-1)\\\\=6x^4+9x^3-3x^2-4x^3-6x^2+2x\qquad\text{combine like terms}\\\\=6x^4+(9x^3-4x^3)+(-3x^2-5x^2)+2x\\\\=6x^4+5x^3-8x^2+2x[/tex]
multiplication of (3x^2-2x)(2x^2+3x-1) is 6X⁴+5X³-9x²+2X
What are polynomials?
- A polynomial expression is an expression that can be built from constants and symbols.
- Polynomials are algebraic expressions that comprise exponents which can be added, subtracted, or multiplied.
- Polynomials are of different types.
- Monomial- Linear equations (A monomial is a polynomial with one term)
- Binomia- quadratic equation (A binomial is a polynomial with two, unlike terms).
CALCULATION:-
⇒(3X²-2X)(2X²+3X-1)
⇒6X⁴+9X³-3X²-4X³-6X²+2X
⇒ 6X⁴+5X³-9x²+2X (answer)
Learn more about polynomials here:-https://brainly.com/question/2833285
#SPJ2