Answer:
The speed of the ambulance is 4.66 m/s.
Explanation:
Given that,
The siren emitting a whine at 1570 Hz
The cyclist pedaling a bike at 2.45 m/s
The cyclist hears a frequency of 1560 Hz
We know that,
Speed of sound wave
[tex]v = 343\ m/s[/tex]
We calculate the speed of the ambulance
Using Doppler effect,
[tex]f'=f\times\dfrac{v+v_{o}}{v+v_{s}}[/tex]
Where,
[tex]f' [/tex]= frequency of ambulance siren
[tex]f [/tex]= cyclist hears the frequency
[tex]v_{s}[/tex]=speed of source
[tex]v_{v}[/tex]= speed of observer
Put the value in to the formula
[tex]v_{s}=f\times\dfrac{v+v_{o}}{f'}-v[/tex]
[tex]v_{s}=1570\times\dfrac{343-2.45}{1560}-343[/tex]
[tex]v_{s}=4.66\ m/s[/tex]
Hence, The speed of the ambulance is 4.66 m/s.