Answer:
The correct option is 2.
Step-by-step explanation:
According to the the center-of-gravity technique, the coordinates of the center-of-gravity location are
[tex](\frac{\sum x_iL_i}{\sum L_i},\frac{\sum y_iL_i}{\sum L_i})[/tex]
Where ([tex](x_i,y_i)[/tex] represent the coordinates and [tex]L_i[/tex] is demand.
We have to find the Y-coordinate of the center-of-gravity location.
The sum of product of demand and corresponding y coordinates is
[tex]\sum y_iL_i=65\times 2200+55\times 900+95\times 1300+200\times 1750+175\times 3100=1208500[/tex]
The sum of demanded units is
[tex]\sum L_i=2200+900+1300+1750+3100=9250[/tex]
The Y-coordinate of the center-of-gravity location is
[tex]y_0=\frac{\sum y_iL_i}{\sum L_i}[/tex]
[tex]y_0=\frac{1208500}{9250}[/tex]
[tex]y_0=130.6486[/tex]
[tex]y_0\approx 131[/tex]
The Y-coordinate of the center-of-gravity location is 131. Therefore the correct option is 2.