Answer:
Rule of 9 : an integer is divisible by 9 if and only if the sum of its integers is divisible by 9.
Proof :
Let us consider a number x such that,
[tex]a=a_n......a_3a_2a_2[/tex]
Where, [tex]a_0, a_1, a_2......,a_n[/tex] are the the digits of the number x,
So, we can write,
[tex]x=a_0+a_1\times 10 + a_2\times 10^2 +a_3\times 10^3..........a_n\times 10^n[/tex]
Let,
[tex]S=a_0+a_1+a_2+a_3+.......a_n[/tex]
[tex]x-S=a_1(10-1)+a_2(10^2-1)+a_3(10^3-1)+.......a_n(10^n-1)[/tex]
Since, a number is in the form of [tex]10^k-1[/tex], where k is an positive integer, is always divisible by 9,
⇒ [tex]a_1(10-1), a_2(10^2-1), a_3(10^3-1),.......a_n(10^n-1)[/tex] are divisible by 9.
⇒ x-S is divisible by 9,
⇒ If S is divisible by 9 ⇒ x must divisible by 9,
Or if x is divisible by 9 ⇒ S must divisible by 9.
Hence, proved...